Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  59
 Total visitors :  7672394

Genetic diversity and SNP`s from the chloroplast coding regions of virus-infected cassava
Saturday, 2020/08/08 | 06:32:44

BR De Marchi , T Kinene, R Krause-Sakate, LM Boykin, J Ndunguru, M Kehoe, E Ateka, F Tairo, J Amisse, P Sseruwagi

 

PeerJ. 2020 Mar 2;8:e8632.  doi: 10.7717/peerj.8632.

 

Abstract

 

Cassava is a staple food crop in sub-Saharan Africa; it is a rich source of carbohydrates and proteins which currently supports livelihoods of more than 800 million people worldwide. However, its continued production is at stake due to vector-transmitted diseases such as Cassava mosaic disease and Cassava brown streak disease. Currently, the management and control of viral diseases in cassava relies mainly on virus-resistant cultivars of cassava. Thus, the discovery of new target genes for plant virus resistance is essential for the development of more cassava varieties by conventional breeding or genetic engineering. The chloroplast is a common target for plant viruses propagation and is also a potential source for discovering new resistant genes for plant breeding. Non-infected and infected cassava leaf samples were obtained from different locations of East Africa in Tanzania, Kenya and Mozambique. RNA extraction followed by cDNA library preparation and Illumina sequencing was performed. Assembling and mapping of the reads were carried out and 33 partial chloroplast genomes were obtained. Bayesian phylogenetic analysis from 55 chloroplast protein-coding genes of a dataset with 39 taxa was performed and the single nucleotide polymorphisms for the chloroplast dataset were identified. Phylogenetic analysis revealed considerable genetic diversity present in chloroplast partial genome among cultivated cassava of East Africa. The results obtained may supplement data of previously selected resistant materials and aid breeding programs to find diversity and achieve resistance for new cassava varieties.

 

See https://pubmed.ncbi.nlm.nih.gov/32175188/

 

Figure 1: Phylogenetic relationships among cassava chloroplast coding regions collected in East Africa.

 

The cassava plants were clustered in three main clades (A–C). The viruses detected on the samples are indicated in colorful letters inside gray squares: Ugandan cassava brown streak virus (UCBSV), Cassava brown streak virus (CBSV), East African cassava mosaic virus (EACMV-Ug) and East African cassava mosaic Zanzibar virus (EACMZV). Samples obtained from GenBank are highlighted in blue.

 

Illumina sequencing of libraries prepared from total DNA produced between 2,071,164 and 23,427,360 paired-end reads with a maximum sequence length of 100 nucleotides and minimum of 30 nucleotides for Kenyan samples, maximum sequence length of 300 nucleotides and minimum of 100 nucleotides for Tanzanian samples, maximum of 300 and minimum of 100 nucleotide sequence length for the Mozambican samples.

 

The phylogeny reconstruction consisted of an 35,439 bp alignment and included 55 protein-coding genes for a dataset with 39 taxa. The single-copy genes analyzed (53 genes) were psbA,  atpA,  atpF,  atpH,  atpI,  rps2,  rpoC1,  psbM,  psbD,  psbC,  psbZ,  rps14,  psaB,  psaA,  ycf3,  rps4,  ndhJ,  ndhK,  ndhC,  atpE,  atpB,  rbcL,  psaI,  ycf4,  cemA,  petA,  psbJ,  psbL,  psbF,  psbE,  petG,  psaJ,  rpl33,  rpl20,  clpP,  psbB,  psbT,  psbN,  psbH,  petB,  rps11,  rpl36,  rps8,  rpl14,  rpl16,  rps3,  rpl22,  psaC,  ndhE,  ndhG,  ndhI,  ndhA and ndhH. The genes duplicated in the IR analyzed (2 genes) were rps7 and rpl23. All the GenBank Accessions from the nucleotide sequences obtained in this study are available.

Back      Print      View: 195

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD